ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 56769
УсловиеТочки K, L, M и N лежат на сторонах AB, BC, CD
и DA параллелограмма ABCD, причем отрезки KM
и LN параллельны сторонам параллелограмма. Эти отрезки
пересекаются в точке O. Докажите, что площади параллелограммов KBLO
и MDNO равны тогда и только тогда, когда точка O лежит на
диагонали AC.
РешениеЕсли площади параллелограммов KBLO и MDNO равны,
то
OK . OL = OM . ON. Учитывая, что ON = KA и OM = LC,
получаем
KO : KA = LC : LO. Следовательно,
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке