Страница: 1 2 >> [Всего задач: 8]
Точки K, L, M и N лежат на сторонах AB, BC, CD
и DA параллелограмма ABCD, причем отрезки KM
и LN параллельны сторонам параллелограмма. Эти отрезки
пересекаются в точке O. Докажите, что площади параллелограммов KBLO
и MDNO равны тогда и только тогда, когда точка O лежит на
диагонали AC.
Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O.
Докажите, что SAKON + SCLOM = SBKOL + SDNOM.
На сторонах AB и CD четырехугольника ABCD
взяты точки M и N так, что
AM : MB = CN : ND. Отрезки AN
и DM пересекаются в точке K, а отрезки BN и CM — в
точке L. Докажите, что
SKMLN = SADK + SBCL.
На стороне AB четырехугольника ABCD взяты точки A1
и B1, а на стороне CD — точки C1 и D1,
причем
AA1 = BB1 = pAB и
CC1 = DD1 = pCD, где p < 0, 5. Докажите,
что
SA1B1C1D1/SABCD = 1 - 2p.
|
|
Сложность: 4 Классы: 8,9,10
|
Каждая из сторон выпуклого четырехугольника разделена
на пять равных частей и соответствующие точки противоположных сторон
соединены (см. рис.). Докажите, что площадь среднего (заштрихованного)
четырехугольника в 25 раз меньше площади исходного.
Страница: 1 2 >> [Всего задач: 8]