ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]      



Задача 54306

Тема:   [ Площадь треугольника (через высоту и основание) ]
Сложность: 2+
Классы: 8,9

Основание треугольника на 4 меньше высоты, а площадь треугольника равна 96. Найдите основание и высоту треугольника.

Прислать комментарий     Решение

Задача 116434

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь параллелограмма ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Внутри параллелограмма ABCD выбрана произвольная точка Р и проведены отрезки РА, РВ, РС и PD. Площади трёх из образовавшихся треугольников равны 1, 2 и 3 (в каком-то порядке). Какие значения может принимать площадь четвёртого треугольника?

Прислать комментарий     Решение

Задача 35010

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Неравенство треугольника ]
Сложность: 3-
Классы: 9

Существует ли треугольник с высотами, равными 1, 2 и 3?

Прислать комментарий     Решение

Задача 35802

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Подсчет двумя способами ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 9

Радиус вписанной окружности треугольника равен 1. Докажите, что наименьшая высота этого треугольника не превосходит 3.
Прислать комментарий     Решение


Задача 67451

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .