Страница: 1
2 3 4 5 6 7 >> [Всего задач: 60]
Основание треугольника на 4 меньше высоты, а площадь треугольника равна 96. Найдите основание и высоту треугольника.
|
|
|
Сложность: 2+ Классы: 9,10,11
|
Внутри параллелограмма ABCD выбрана произвольная точка Р и проведены отрезки РА, РВ, РС и PD. Площади трёх из образовавшихся треугольников равны 1, 2 и 3 (в каком-то порядке). Какие значения может принимать площадь четвёртого треугольника?
Существует ли треугольник с высотами, равными 1, 2 и 3?
Радиус вписанной окружности треугольника равен 1. Докажите, что
наименьшая высота этого треугольника не превосходит 3.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?

Страница: 1
2 3 4 5 6 7 >> [Всего задач: 60]