ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56773
Тема:    [ Площадь четырехугольника ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

На каждой стороне параллелограмма взято по точке. Площадь четырехугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырехугольника параллельна стороне параллелограмма.

Решение

На сторонах AB, BC, CD и AD взяты точки K, L, M и N соответственно. Предположим, что диагональ KM не параллельна стороне AD. Фиксируем точки K, M, N и будем двигать точку L по стороне BC. При этом площадь треугольника KLM изменяется строго монотонно. Кроме того, если  LN || AB, то выполняется равенство  SAKN + SBKL + SCLM + SDMN = SABCD/2, т. е.  SKLMN = SABCD/2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 4
Название Площади частей, на которые разбит четырехугольник
Тема Площадь четырехугольника
задача
Номер 04.023

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .