ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57003
Темы:    [ Частные случаи треугольников (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если  ∠A = 45°,  то B1C1 – диаметр окружности девяти точек треугольника ABC.


Решение

Диаметр описанной окружности треугольника ABC равен     значит, диаметр окружности девяти точек равен    Треугольник AC1B1 подобен треугольнику ABC с коэффициентом  cos 45°  (см. задачу 52357), значит,     Поскольку точки B1 и C1 лежат на окружности девяти точек, то B1C1 – диаметр.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 14
Название Задачи для самостоятельного решения
задача
Номер 05.144

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .