ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57253
Тема:    [ Окружности (построения) ]
Сложность: 5+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Постройте окружность, равноудалённую от четырёх данных точек.

Решение

Пусть A, B, C, D — данные точки, S — искомая окружность. По одну сторону от S лежит k данных точек, по другую сторону лежит 4 - k данных точек. Мы будем предполагать, что данные точки не лежат на одной окружности (иначе в качестве S можно взять любую окружность с тем же центром; получается бесконечно много решений). Таким образом, 1$ \le$k$ \le$3. Мы получаем два существенно различных расположения точек по отношению к S: 2 + 2 и 1 + 3.
Пусть сначала точки A и B лежат по одну сторону от окружности S, а точки C и D — по другую. Центром окружности S является точка O пересечения серединных перпендикуляров к отрезкам AB и CD. Радиус окружности S равен среднему арифметическому длин отрезков OA и OC. Четыре точки можно разбить на пары тремя способами, поэтому мы получаем 3 решения.
Пусть теперь точки A, B и C лежат по одну сторону от окружности S, а точка D — по другую. Проведём через точки A, B и C окружность. Пусть O и R — её центр и радиус. Точка O является центром искомой окружности, а радиус искомой окружности равен среднему арифметическому R и OD. Одну точку из четырёх можно выбрать четырьмя способами, поэтому мы получаем 4 решения.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 8
Название Построения
Тема Построения
параграф
Номер 8
Название Окружности
Тема Окружности (построения)
задача
Номер 08.056B1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .