ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 57536
УсловиеДан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.РешениеПо теореме синусов радиусы описанных окружностей треугольников ACM и BCM равны AC/(2 sin AMC) и BC/(2 sin BMC) соответственно. Легко проверить, что sin AMC = sin BMC. Поэтому AC/(2 sin AMC) + BC/(2 sin BMC) = (AC+BC)/(2 sin BMC). Последнее выражение будет наименьшим, если sin BMC = 1, т. е. CM AB.Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|