ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57540
Темы:    [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через высоту и основание) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Из точки M, лежащей внутри данного треугольника ABC, опущены перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина     принимает наименьшее значение?


Решение

Пусть x = MA1y = MB1  и  z = MC1.  Тогда   ax + by + cz = 2SBMC + 2SAMC + 2SAMB = 2SABC.  Поэтому

       

причём равенство достигается, только когда  x = y = z,  то есть когда M – центр вписанной окружности треугольника ABC.


Ответ

M – центр вписанной окружности треугольника ABC.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 2
Название Экстремальные точки треугольника
Тема Экстремальные точки треугольника
задача
Номер 11.020

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .