ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57551
Тема:    [ Четырехугольники (экстремальные свойства) ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Трапеция ABCD с основанием AD разрезана диагональю AC на два треугольника. Прямая l, параллельная основанию, разрезает эти треугольники на два треугольника и два четырехугольника. При каком положении прямой l сумма площадей полученных треугольников минимальна?

Решение

Пусть S0 и S — рассматриваемые суммы площадей треугольников для прямой l0, проходящей через точку пересечения диагоналей трапеции, и для некоторой другой прямой l. Легко проверить, что S = S0 + s, где s — площадь треугольника, образованного диагоналями AC и BD и прямой l. Поэтому l0 — искомая прямая.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 4
Название Четырехугольники
Тема Четырехугольники (экстремальные свойства)
задача
Номер 11.031

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .