ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 57620
Условиеα, β и γ - углы треугольника ABC. Докажите, чтоа) cos(/2)sin(/2)sin(/2) = (p - a)/4R; б) sin(/2)cos(/2)cos(/2) = ra/4R. Решениеа) Перемножая равенства
r cos(/2)sin(/2) = p - a, sin(/2)sin(/2)sin(/2) = r/4R
(см. задачи 12.17, в)
и 12.36, а)), получаем требуемое.
б) Согласно задаче 12.17, в) ratg(/2) = p - b = rctg(/2). Умножая это равенство на равенство r/4R = sin(/2)sin(/2)sin(/2), получаем требуемое. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|