ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Император пригласил на праздник 2015 волшебников, добрых и злых, при этом волшебники знают, кто добрый и кто злой, а император – нет. Добрый волшебник всегда говорит правду, а злой говорит что угодно. На празднике император сначала выдаёт каждому волшебнику по бумажке с вопросом (требующим ответа "да" или "нет"), затем волшебники отвечают, и после всех ответов император одного изгоняет. Волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. После этого император вновь выдаёт каждому из оставшихся волшебников по бумажке с вопросом, вновь одного изгоняет, и так далее, пока император не решит остановиться (это возможно после любого из ответов, и после остановки можно никого не изгонять). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.
Докажите, что правильный треугольник можно
разрезать на n правильных треугольников для любого n, начиная
с шести.
Даны угол и внутри его точки A и B. Постройте
параллелограмм, для которого точки A и B — противоположные
вершины, а две другие вершины лежат на сторонах угла.
|
Задача 57853
УсловиеДаны угол и внутри его точки A и B. Постройте
параллелограмм, для которого точки A и B — противоположные
вершины, а две другие вершины лежат на сторонах угла.
РешениеПусть O — середина отрезка AB. Нужно построить точки C
и D, лежащие на сторонах угла, для которых точка O является
серединой отрезка CD. Это построение описано в решении
предыдущей задачи.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке