ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58005
Тема:    [ Поворотная гомотетия ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Окружности S1 и S2 пересекаются в точках A и B. Прямые p и q, проходящие через точку A, пересекают окружность S1 в точках P1 и Q1, а окружность S2 — в точках P2 и Q2. Докажите, что угол между прямыми P1Q1 и P2Q2 равен углу между окружностями S1 и S2.

Решение

Так как $ \angle$(P1A, AB) = $ \angle$(P2A, AB), то ориентированные угловые величины дуг BP1 и BP2 равны. Поэтому при поворотной гомотетии с центром B, переводящей S1 в S2, точка P1 переходит в P2, а прямая P1Q1 переходит в прямую P2Q2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 5
Название Поворотная гомотетия
Тема Поворотная гомотетия
задача
Номер 19.026

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .