ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58008
Тема:    [ Поворотная гомотетия ]
Сложность: 4
Классы: 9
В корзину
Прислать комментарий

Условие

Две окружности пересекаются в точках A и B, а хорды AM и AN касаются этих окружностей. Треугольник MAN достроен до параллелограмма MANC и отрезки BN и MC разделены точками P и Q в равных отношениях. Докажите, что $ \angle$APQ = $ \angle$ANC.

Решение

Так как $ \angle$AMB = $ \angle$NAB и  $ \angle$BAM = $ \angle$BNA, то $ \triangle$AMB $ \sim$ $ \triangle$NAB, а значит, AN : AB = MA : MB = CN : MB. Кроме того, $ \angle$ABM = 180o - $ \angle$MAN = $ \angle$ANC. Следовательно, $ \triangle$AMB $ \sim$ $ \triangle$ACN, т. е. поворотная гомотетия с центром A, переводящая M в B, переводит C в N, а значит, она переводит Q в P.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 5
Название Поворотная гомотетия
Тема Поворотная гомотетия
задача
Номер 19.029

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .