ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58053
Тема:    [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости дано n$ \ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.

Решение

Пусть A и B — те из данных точек, расстояние между которыми минимально. Тогда внутри окружности с диаметром AB нет данных точек. Пусть C — та из оставшихся точек, из которой отрезок AB виден под наибольшим углом. Тогда внутри окружности, проходящей через точки A, B и C, нет данных точек.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 20
Название Принцип крайнего
Тема Принцип крайнего
параграф
Номер 2
Название Наименьшее или наибольшее расстояние
Тема Наименьшее или наибольшее расстояние (длина)
задача
Номер 20.008

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .