ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58084
Темы:    [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 4
Классы: 7,8
В корзину
Прислать комментарий

Условие

На плоскости дано 25 точек, причем среди любых трех из них найдутся две на расстоянии меньше 1. Докажите, что существует круг радиуса 1, содержащий не меньше 13 из этих точек.

Решение

Пусть A — одна из данных точек. Если все остальные точки лежат в круге S1 радиуса 1 с центром A, то доказывать больше нечего. Пусть теперь B — данная точка, лежащая вне круга S1, т. е. AB > 1. Рассмотрим круг S2 радиуса 1 с центром B. Среди точек A, B и C, где C — любая из данных точек, найдутся две на расстоянии меньше 1, причем это не могут быть точки A и B. Поэтому круги S1 и S2 содержат все данные точки, т. е. один из них содержит не менее 13 точек.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 1
Название Конечное число точек, прямых и т.д.
Тема Принцип Дирихле (конечное число точек, прямых и т. д.)
задача
Номер 21.005

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .