ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58089
Темы:    [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Какое наименьшее число точек достаточно отметить внутри выпуклого n-угольника, чтобы внутри любого треугольника с вершинами в вершинах n-угольника содержалась хотя бы одна отмеченная точка?

Решение

Так как диагонали, выходящие из одной вершины, делят n-угольник на n - 2 треугольника, n-2 точки необходимы.
Из рис. можно понять, как обойтись n - 2 точками: достаточно отметить по одной точке в каждом зачерненном треугольнике. В самом деле, внутри треугольника ApAqAr, где p < q < r, всегда содержится зачерненный треугольник, прилегающий к вершине Aq.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 1
Название Конечное число точек, прямых и т.д.
Тема Принцип Дирихле (конечное число точек, прямых и т. д.)
задача
Номер 21.010

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .