Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а)  1 < cos$ \alpha$ + cos$ \beta$ + cos$ \gamma$ $ \leq$ 3/2;
б)  1 < sin($ \alpha$/2) + sin($ \beta$/2) + sin($ \gamma$/2) $ \leq$ 3/2.

Вниз   Решение


Дан выпуклый четырехугольник ABCD. Пусть P, Q — точки пересечения продолжений противоположных сторон AB и CD, AD и BC соответственно, R — произвольная точка внутри четырехугольника. Пусть K — точка пересечения прямых BC и PR, L — точка пересечения прямых AB и QR, M — точка пересечения прямых AK и DR. Докажите, что точки L, M и C лежат на одной прямой.

Вверх   Решение

Задача 58115
Темы:    [ Выпуклые многоугольники ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

Решение

Пусть P — точка пересечения диагоналей A1A4 и A2A5 выпуклого семиугольника A1...A7. Одна из диагоналей A3A7 и A3A6, для определенности диагональ A3A6, не проходит через точку P. Точек пересечения диагоналей шестиугольника A1...A6 конечное число, поэтому вблизи точки A7 можно выбрать такую точку A7', что прямые A1A7',..., A6A7' не проходят через эти точки, т. е. семиугольник A1...A7' неособый.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 22
Название Выпуклые и невыпуклые многоугольники
Тема Выпуклые и невыпуклые фигуры
параграф
Номер 1
Название Выпуклые многоугольники
Тема Выпуклые многоугольники
задача
Номер 22.005

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .