ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58123
Условиеа) Докажите, что параллелограмм нельзя покрыть тремя меньшими гомотетичными ему параллелограммами.б) Докажите, что любой выпуклый многоугольник, кроме параллелограмма, можно покрыть тремя меньшими гомотетичными ему многоугольниками. Решениеа) Пусть ABCD — данный параллелограмм. В меньшем параллелограмме, гомотетичном ему, любой отрезок, параллельный стороне AB, строго меньше AB. То же самое верно не только для сторон, но и для диагоналей. Поэтому каждую из четырёх вершин параллелограмма должен покрывать свой параллелограмм.б) Пусть выпуклый многоугольник M отличен от параллелограмма. Воспользовавшись результатом задачи 22.8, выберем три стороны многоугольника M, при продолжении которых образуется треугольник ABC, объемлющий многоугольник M. Затем выберем на этих трёх сторонах точки A1, B1 и C1, отличные от вершин многоугольника (точка A1 лежит на прямой BC и т.д.). Наконец, выберем произвольную точку O внутри многоугольника M. Отрезки OA1, OB1 и OC1 разрезают M на три части. Рассмотрим гомотетию с центром A. Если коэффициент этой гомотетии достаточно близок к 1, то образ многоугольника M полностью покрывает ту часть, которую отрезают OB1 и OC1. Две остальные части покрываются аналогично. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|