ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58237
Тема:    [ Свойства частей, полученных при разрезаниях ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На квадратном листе бумаги нарисовано n прямоугольников со сторонами, параллельными сторонам листа. Никакие два из этих прямоугольников не имеют общих внутренних точек. Докажите, что если вырезать эти прямоугольники, то количество кусков, на которые распадается оставшаяся часть листа, не более n + 1.

Решение

Сумма внешних углов многоугольника, прилегающих к внутренним углам, меньшим $ \pi$, не меньше 2$ \pi$ (см. задачу 22.19). Внешние углы фигур, на которые распадается оставшаяся часть листа, являются либо внешними углами квадрата, либо внутренними углами вырезанных прямоугольников. Поэтому сумма всех внешних углов этих фигур не превосходит 2$ \pi$(n + 1), т. е. количество фигур не превосходит n + 1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 25
Название Разрезания, разбиения, покрытия
Тема Разрезания, разбиения, покрытия и замощения
параграф
Номер 3
Название Свойства частей, полученных при разрезаниях
Тема Свойства частей, полученных при разрезаниях
задача
Номер 25.018

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .