ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58249
Тема:    [ Плоскость, разрезанная прямыми ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что если среди полученных фигур есть p-звенная и q-звенная, то p + q$ \le$n + 4.

Решение

Назовем прямую граничной для данной фигуры, если она является продолжением отрезка или луча, ограничивающего эту фигуру. Достаточно доказать, что две рассматриваемые фигуры не могут иметь более четырех общих граничных прямых. Если две фигуры имеют четыре общие граничные прямые, то одна из фигур лежит в области 1, а другая лежит в области 2 (рис.). Пятая граничная прямая фигуры, лежащей в области 1, должна пересекать две соседние стороны четырехугольника 1, но тогда она не может быть граничной прямой для фигуры, лежащей в области 2.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 25
Название Разрезания, разбиения, покрытия
Тема Разрезания, разбиения, покрытия и замощения
параграф
Номер 5
Название Плоскость, разрезанная прямыми
Тема Плоскость, разрезанная прямыми
задача
Номер 25.008.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .