ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58306
Темы:    [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?


Подсказка

Для каждой пары прожекторов на арене должна найтись область, освещённая в точности этими двумя прожекторами.


Решение

Впишем в арену правильный k-угольник, где  k = ½ n(n – 1)  – число различных пар, которые можно составить из n прожекторов. Тогда можно установить взаимно однозначное соответствие между сегментами, отсекаемыми сторонами k-угольника, и парами прожекторов. Пусть каждый прожектор освещает весь k-угольник и сегменты, соответствующие парам прожекторов, в которые он входит. Легко проверить, что это освещение обладает требуемыми свойствами.


Ответ

При любом  n ≥ 2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 26
Название Системы точек и отрезков. Примеры и контрпримеры
Тема Системы точек и отрезков
параграф
Номер 3
Название Примеры и контрпримеры
Тема Системы точек и отрезков. Примеры и контрпримеры
задача
Номер 26.023
web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .