Страница: 1 2 3 >> [Всего задач: 11]
Существует ли треугольник, у которого все высоты
меньше 1 см, а площадь больше 1
м2?
В выпуклом четырехугольнике ABCD равны стороны AB и CD
и углы A и C. Обязательно ли этот четырехугольник параллелограмм?
Арена цирка освещается n различными прожекторами. Каждый прожектор
освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?
Список упорядоченных в порядке возрастания длин
сторон и диагоналей одного выпуклого четырехугольника
совпадает с таким же списком для другого четырехугольника.
Обязательно ли эти четырехугольники равны?
Пусть n
3. Существуют ли n точек, не лежащих
на одной прямой, попарные расстояния между которыми
иррациональны, а площади всех треугольников с вершинами
в них рациональны?
Страница: 1 2 3 >> [Всего задач: 11]