ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58309
Темы:    [ Индукция в геометрии ]
[ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Пусть E – точка пересечения боковых сторон AD и BC трапеции ABCD, Bn+1 – точка пересечения прямых AnC и BD  (A0 = A),  An+1 – точка пересечения прямых EBn+1 и  AB. Докажите, что  AnB = AB/n+1.


Решение

  Индукция по n. База:  A0B = AB.
  Шаг индукции. Пусть Cn – точка пересечения прямых EAn и DC,  DC/AB = k,  AB = a,  AnB = an/n+1  и  An+1B = x.  Так как
CCn+1 : AnAn+1 = DCn+1 : BAn+1,  то  kx : (an – x) = (ka – kx) : x,  то есть  x = aan/a+an = a/n+2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 27
Название Индукция и комбинаторика
Тема Неопределено
параграф
Номер 1
Название Индукция
Тема Индукция в геометрии
задача
Номер 27.003

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .