|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вася написал на листке бумаги записку, сложил её вчетверо, надписал сверху "МАМЕ" (см. фото). Затем он развернул записку, дописал ещё кое-что, опять сложил записку по линиям сгиба случайным образом (не обязательно, как раньше) и оставил на столе, положив случайной стороной вверх. Найдите вероятность того, что надпись "МАМЕ" по-прежнему сверху. Докажите, что если стороны выпуклого шестиугольника ABCDEF равны 1, то радиус описанной окружности одного из треугольников ACE и BDF не превосходит 1. |
Задача 58319
УсловиеДокажите, что при инверсии с центром O прямая l, не проходящая через O, переходит в окружность, проходящую через O.РешениеОпустим из точки O перпендикуляр OC на прямую l и возьмем произвольную точку M на l. Из подобия треугольников OCM и OM*C* (задача 28.1) следует, чтоИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|