ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58341
Темы:    [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках A и B.

Решение

Пусть C — вершина данного угла. При инверсии с центром в точке A прямая CB перейдет в окружность S, а окружности S1 и S2 — в окружность S1* с центром O1, касающуюся S в точке B*, и прямую l, параллельную C*A, касающуюся S1* в точке X (рис.). Проведем в окружности S радиус OD $ \perp$ C*A. Точки O, B* и O1 лежат на одной прямой, a OD| O1X. Поэтому $ \angle$OB*D = 90o - $ \angle$DOB*/2 = 90o - ($ \angle$XO1B*/2) = $ \angle$O1B*X, следовательно, точка X лежит на прямой DB*. Еще раз применив инверсию, получим, что искомое множество точек касания — это дуга AB окружности, проходящей через точки A, B и D*.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 28
Название Инверсия
Тема Инверсия
параграф
Номер 4
Название Сделаем инверсию
Тема Инверсия помогает решить задачу
задача
Номер 28.023

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .