ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

   Решение

Задача 58349
Тема:    [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 4
Классы: 9,10
В корзину
Прислать комментарий

Условие

Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).



Решение

После инверсии с центром в точке пересечения S1 и S2 получим прямые l1, l2 и l, пересекающиеся в одной точке. Прямая l1 пересекает окружность S4* в точках A и B, прямая l2 пересекает S3* в точках C и D, а прямая l проходит через точки пересечения этих окружностей. Поэтому точки A, B, C, D лежат на одной окружности (задача 3.9).


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 28
Название Инверсия
Тема Инверсия
параграф
Номер 5
Название Точки, лежащие на одной окружности, и окружности, проходящие через одну точку
Тема Точки, лежащие на одной окружности, и окружности, проходящие через одну точку
задача
Номер 28.030

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .