ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58373
УсловиеДокажите, что любой выпуклый четырехугольник, кроме трапеции, аффинным
преобразованием можно перевести в четырехугольник, у которого противоположные
углы прямые.
РешениеСлучаи трапеции и параллелограмма легко разбираются, поэтому будем
предполагать, что у выпуклого четырехугольника ABCD нет параллельных сторон.
Для определенности будем считать, что пересекаются лучи AB и DC, BC и
AD. Пусть
(pa + qb, ua + vb) = pu
Поскольку pu > 0 и qv < 0, этого всегда можно добиться выбором чисел Отметим, что при любом аффинном преобразовании образ угла при вершине C больше образа угла при вершине A; эти углы нельзя сделать равными. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке