ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58409
Тема:    [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.



Решение

Обозначим данные прямые через l0 и l, данные точки на прямой l0 — через A0, B0, C0, данные точки на прямой l — через A, B, C. Пусть l1 — произвольная прямая, не проходящая через точку A. Возьмем произвольную точку O0, не лежащую на прямых l0 и l1. Обозначим через P0 центральное проектирование прямой l0 на прямую l1 с центром в точке O0, а через A1, B1, C1 — проекции точек A0, B0, C0. Пусть l2 — произвольная прямая, проходящая через точку A, не совпадающая с прямой l и не проходящая через A1. Возьмем некоторую точку O1 на прямой AA1 и рассмотрим центральное проектирование P1 прямой l1 на l2 с центром в O1. Обозначим через A2, B2, C2 проекции точек A1, B1, C1. Ясно, что A2 совпадает с A. Наконец, пусть P2 — проектирование прямой l2 на прямую l, которое в том случае, когда прямые BB2 и CC2 не параллельны, является центральным проектированием с центром в точке пересечения этих прямых, а в том случае, когда прямые BB2 и CC2 параллельны, является параллельным проектированием вдоль одной из этих прямых. Композиция P2oP1oP0 является требуемым проективным преобразованием.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 30
Название Проективные преобразования
Тема Проективная геометрия
параграф
Номер 1
Название Проективные преобразования прямой
Тема Проективные преобразования прямой
задача
Номер 30.001

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .