Страница: 1
2 3 4 5 6 7 >> [Всего задач: 120]
Проекцией точки
A из точки
O на плоскость
P называется точка
A', в
которой прямая
OA пересекает плоскость
P. Проекцией треугольника
называется фигура, состоящая из всех проекций его точек. Какими фигурами может
быть проекция треугольника, если точка
O не лежит в его плоскости?
Дана тригармоническая четвёрка точек A, B, C и D (то есть AB·CD = AC·BD = AD·BC). Пусть A1 – такая отличная от A точка, что четвёрка точек A1, B, C и D тригармоническая. Точки B1, C1 и D1 определяются аналогично. Докажите, что
a) A, B, C1, D1 лежат на одной окружности;
б) точки A1, B1, C1, D1 образуют тригармоническую четвёрку.
|
|
Сложность: 5- Классы: 9,10,11
|
Хорда $PQ$ окружности, описанной около треугольника $ABC$, пересекает стороны $BC$, $AC$ в точках $A'$, $B'$ соответственно. Касательные к окружности в точках $A$ и $B$ пересекаются в точке $X$, а касательные в точках $P$ и $Q$ – в точке $Y$. Прямая $XY$ пересекает $AB$ в точке $C'$. Докажите, что прямые $AA'$, $BB'$ и $CC'$ пересекаются в одной точке.
Докажите, что существует проективное отображение,
которое три данные точки одной прямой переводит в три
данные точки другой прямой.
а) Даны прямые
a,
b,
c,
d, проходящие через одну
точку, и прямая
l, через эту точку не проходящая. Пусть
A,
B,
C,
D — точки пересечения прямой
l с прямыми
a,
b,
c,
d соответственно. Докажите, что
(
abcd )= (
ABCD).
б) Докажите, что двойное отношение четверки точек
сохраняется при проективных преобразованиях.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 120]