ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 114]      



Задача 58460

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6
Классы: 10,11

Даны две прямые l1 и l2 и две точки A и B, не лежащие на этих прямых. Циркулем и линейкой постройте на прямой l1 такую точку X, чтобы прямые AX и BX высекали на прямой l2 отрезок, а) имеющий данную длину a; б) делящийся пополам в данной точке E прямой l2.
Прислать комментарий     Решение


Задача 58444

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Докажите, что прямые, соединяющие противоположные точки касания описанного четырехугольника, проходят через точку пересечения диагоналей.
Прислать комментарий     Решение


Задача 58445

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Докажите, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон с вписанной окружностью, пересекаются в одной точке.
Прислать комментарий     Решение


Задача 58446

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

а) Через точку P проводятся всевозможные секущие окружности S. Найдите геометрическое место точек пересечения касательных к окружности S, проведенных в двух точках пересечения окружности с секущей.
б) Через точку P проводятся всевозможные пары секущих AB и CD окружности S (A, B, C, D — точки пересечения с окружностью). Найдите геометрическое место точек пересечения прямых AC и BD.
Прислать комментарий     Решение


Задача 58447

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Даны окружность S, прямая l, точка M, лежащая на S и не лежащая на l, и точка O, не лежащая на S. Рассмотрим преобразование P прямой l, являющееся композицией проектирования l на S из M, S на себя из O и S на l из M, т. е. P(A) — пересечение прямых l и MC, где C — отличная от B точка пересечения S с прямой OB, а B — отличная от A точка пересечения S с прямой MA. Докажите, что преобразование P проективно.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 114]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .