ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58520
Условиеа) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите,
что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB
пересекаются в одной точке (Штейнер).
Решениеа) Продолжим рассуждения из решение задачи 31.052 дальше.
Приравнивая (2) и (3),
получим, что точки пересечения прямых AF и BE, ED и CF,
AD и BC лежат на прямой
б) При доказательстве теоремы Штейнера исходными четырехугольниками были ABCD, AFED и BEFC. Можно исходить также из четырехугольников ABFE, ABDC и CDFE. Тогда получим теорему Киркмана. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке