ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 60299
УсловиеИз чисел от 1 до 2n выбрано n + 1 число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое. РешениеРассмотрим наибольшие нечётные делители выбранных чисел. У чисел от 1 до 2n есть ровно n различных наибольших нечётных делителей (числа 1, 3, ..., 2n – 1). Итак, два из выбранных чисел имеют одинаковые наибольшие нечётные делители. Это означает, что два выбранных числа отличаются только тем, что множитель 2 входит в них в разных степенях. Большее из них делится на меньшее. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке