ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)? Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$. Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами (p, q). Анаграммой называется произвольное слово, полученное из данного слова
перестановкой букв. Сколько анаграмм можно составить из слов: |
Задача 60394
УсловиеАнаграммой называется произвольное слово, полученное из данного слова
перестановкой букв. Сколько анаграмм можно составить из слов: ПодсказкаСм. задачу 30330. Ответа) 5! = 120; б) 6! : 2 = 360; в) 8! : 4! = 1680; г) 11! : (2!·3!) = 3326400; д) 11! : (5!·2·2) = 83160; е) 13! : 24 анаграмм. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке