ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60395
Темы:    [ Треугольник Паскаля и бином Ньютона ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 9,10
Название задачи: Шахматный город.
В корзину
Прислать комментарий

Условие

Рассмотрим прямоугольную сетку размерами m×n – шахматный город, состоящий из "кварталов", разделённых  n – 1  горизонтальными и  m – 1  вертикальными "улицами". Каково число различных кратчайших путей на этой сетке, ведущих из левого нижнего угла ("точка"  (0, 0))  в правый верхний ("точку"  (m, n))?


Подсказка

См. задачу 30710.


Ответ

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 2
Название Комбинаторика
Тема Комбинаторика
параграф
Номер 3
Название Размещения, перестановки и сочетания
Тема Классическая комбинаторика
задача
Номер 02.061

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .