ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60477
Темы:    [ Простые числа и их свойства ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 7,8,9
Название задачи: Числа Евклида.
В корзину
Прислать комментарий

Условие

Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
e1 = 2,  en = e1e2...en–1 + 1  (n ≥ 2).  Все ли числа en являются простыми?


Решение

e5 = 1807 = 13·139.


Ответ

Не все.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 1
Название Простые числа
Тема Основная теорема арифметики. Разложение на простые сомножители
задача
Номер 03.025

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .