Страница: 1
2 3 4 5 6 7 >> [Всего задач: 112]
Первый член последовательности равен 934. Каждый следующий равен сумме цифр предыдущего, умноженной на 13.
Найдите 2013-й член последовательности.
|
|
Сложность: 3 Классы: 7,8,9
|
Последовательность {xn} определяется условиями: xn+2 = xn – 1/xn+1 при n ≥ 1.
Докажите, что среди членов последовательности найдётся ноль. Найдите номер
этого члена.
На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?
Последовательность натуральных чисел {xn} строится по следующему правилу: x1 = 2, ..., xn = [1,5xn–1].
Доказать, что последовательность yn = (–1)xn непериодическая.
|
|
Сложность: 3+ Классы: 8,9,10
|
Рассматривается числовой треугольник:
(первая строчка задана, а каждый элемент остальных строчек вычисляется как
разность двух элементов, которые стоят над ним). В 1993-й строчке – один
элемент. Найдите его.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 112]