Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

От квадрата отрезан прямоугольный треугольник, сумма катетов которого равна стороне квадрата.
Докажите, что сумма трёх углов, под которыми видна из трёх оставшихся вершин его гипотенуза, равна 90°.

Вниз   Решение


Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.

Вверх   Решение

Задача 60487
Тема:    [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В задаче 60274 доказана возможность деления с остатком произвольного целого числа a на натуральное число b.
Докажите, что из равенства  a = bq + r  следует соотношение  (a, b) = (b, r).


Решение

У пар  (a, b)  и  (b, r)  совпадают множества общих делителей. Значит, совпадают и наибольшие элементы в этих множествах.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 2
Название Алгоритм Евклида
Тема Алгоритм Евклида
задача
Номер 03.035

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .