ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Прямые AP, BP и CP пересекают прямые BC, CA и AB в точках A1, B1 и C1 соответственно. Точки A2, B2 и C2 выбраны на прямых BC, CA и AB так, что  $ \overline{BA_2}$ : $ \overline{A_2C}$ = $ \overline{A_1C}$ : $ \overline{BA_1}$ $ \overline{CB_2}$ : $ \overline{B_2A}$ = $ \overline{B_1A}$ : $ \overline{CB_1}$ и  $ \overline{AC_2}$ : $ \overline{C_2B}$ = $ \overline{C_1B}$ : $ \overline{AC_1}$. Докажите, что прямые AA2, BB2 и CC2 тоже пересекаются в одной точке Q (или параллельны).

Вниз   Решение


Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?

ВверхВниз   Решение


Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 30411

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Найти наибольший общий делитель чисел  2n + 13  и  n + 7.

Прислать комментарий     Решение

Задача 30412

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Докажите, что дробь несократима ни при каком натуральном n.

Прислать комментарий     Решение

Задача 60591

Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k шагов.
Докажите, что начальные числа m0 и m1 должны удовлетворять неравенствам  m1Fk+1m0Fk+2.

Прислать комментарий     Решение

Задача 30413

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Найдите НОД(2100 – 1, 2120 – 1).

Прислать комментарий     Решение

Задача 30414

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Найдите  НОД(111...111, 11...11)  – в записи первого числа 100 единиц, в записи второго – 60.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .