ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60505
Темы:    [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Найдите все натуральные  n > 1,  для которых  n³ – 3  делится на  n – 1.


Решение

n³ – 3 = (n³ – 1) – 2.  Первое слагаемое делится на  n – 1,  значит, и 2 делится на  n – 1.  Следовательно,  n – 1 = 1 или 2.


Ответ

n = 2, 3.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 2
Название Алгоритм Евклида
Тема Алгоритм Евклида
задача
Номер 03.053

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .