ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60669
Темы:    [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите утверждение обратное тому, что было в задаче 60668:
     если    делится на n при всех  1 ≤ k ≤ n – 1,  то n – простое число.


Решение

Пусть n – составное число и p – один из его простых делителей.     В числителе нет множителей,
кратных p, а в знаменателе – есть. Следовательно, это число – не целое, то есть     не делится на n.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 2
Название Делимость
Тема Теория чисел. Делимость (прочее)
задача
Номер 04.043

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .