ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 60813
УсловиеДвое пишут а) 30-значное; б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать? Решениеа) Стратегия второго: писать цифру так, чтобы сумма её с предыдущей цифрой равнялась 6. Поскольку 15·6 делится на 9, то полученное 30-значное число будет делиться на 9. б) Стратегия первого: сначала нужно написать 1, а потом писать цифру так, чтобы сумма её с предыдущей равнялась 6. В этом случае перед последним ходом второго игрока сумма цифр будет равна 55, и он не сможет добиться своей цели. Ответа) Может; б) не может. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|