Условие
Карточный фокус. а) Берется колода из
27 карт (без одной масти). Ваш друг загадывает одну из карт.
После чего вы раскладываете все карты в три равные кучки, кладя
каждый раз по одной карте (в первую кучку, затем во вторую, затем
в третью, потом снова в первую и т. д.). Ваш друг указывает на ту
кучку, в которой лежит его карта. Далее вы складываете все три
кучки вместе, вставляя при этом указанную кучку между двумя
другими. Эта процедура повторяется еще два раза. На каком месте в
колоде окажется загаданная карта, после того, как вы сложите
вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала
было 3
n (
n < 9) карт?
Ответ
Загаданная карта всегда оказывается в центре
колоды.
Источники и прецеденты использования
|
книга |
Автор |
Алфутова Н.Б., Устинов А.В. |
Год издания |
2002 |
Название |
Алгебра и теория чисел |
Издательство |
МЦНМО |
Издание |
1 |
глава |
Номер |
5 |
Название |
Числа, дроби, системы счисления |
Тема |
Системы счисления |
параграф |
Номер |
3 |
Название |
Двоичная и троичная системы счисления |
Тема |
Двоичная система счисления |
задача |
Номер |
05.067 |