Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть z1, z2, ..., zn – вершины выпуклого многоугольника. Найдите геометрическое место точек  z = λ1z1 + λ2z2 + ... + λnzn,  где λ1, λ2, ..., λn – такие действительные положительные числа, что  λ1 + λ2 + ... + λn = 1.

Вниз   Решение


В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников?

ВверхВниз   Решение


Докажите, что cтепень точки w относительно окружности  Azz + Bz – B z + C = 0  равна  

Вверх   Решение

Задача 61190
Тема:    [ Геометрия комплексной плоскости ]
Сложность: 4-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Докажите, что cтепень точки w относительно окружности  Azz + Bz – B z + C = 0  равна  

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 8
Название Алгебра + геометрия
Тема Неопределено
параграф
Номер 2
Название Комплексные числа и геометрия
Тема Неизвестная тема
задача
Номер 08.029

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .