ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]      



Задача 55373  (#08.001)

Темы:   [ Поворот помогает решить задачу ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9,10

Пусть О – центр правильного многоугольника A1A2A3...AnX – произвольная точка плоскости. Докажите, что:
   a)  


   б)   

Прислать комментарий     Решение

Задача 61163  (#08.002)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

Докажите равенства:

a) cos$ {\dfrac{\pi}{5}}$ - cos$ {\dfrac{2\pi}{5}}$ = $ {\dfrac{1}{2}}$;

б) $ {\dfrac{1}{\sin\frac{\pi}7}}$ = $ {\dfrac{1}{\sin\frac{2\pi}7}}$ + $ {\dfrac{1}{\sin\frac{3\pi}7}}$;

в) sin 9o + sin 49o + sin 89o +...+ sin 329o = 0.

Прислать комментарий     Решение

Задача 61164  (#08.003)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

Вычислите
а) cos$ {\frac{\pi}{9}}$cos$ {\frac{4\pi}{9}}$cos$ {\frac{7\pi}{9}}$;
б) cos$ {\frac{\pi}{7}}$ + cos$ {\frac{3\pi}{7}}$ + cos$ {\frac{5\pi}{7}}$.

Прислать комментарий     Решение

Задача 61165  (#08.004)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Пятиугольники ]
[ Правильные многоугольники ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Найдите  cos 36°  и  cos 72°.

Прислать комментарий     Решение

Задача 61166  (#08.005)

Темы:   [ Метод спуска ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 9,10,11

а) Используя геометрические соображения, докажите, что основание и боковая сторона равнобедренного треугольника с углом 36o при вершине несоизмеримы.
б) Придумайте геометрическое доказательство иррациональности $ \sqrt{2}$.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .