ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 245]      



Задача 56472

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 2+
Классы: 9

а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что  AD : DC = AB : BC.

б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении  AO : OA1 = (b + c) : a,  где a, b, c  – длины сторон треугольника.

Прислать комментарий     Решение

Задача 86512

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Неравенство треугольника (прочее) ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?

Прислать комментарий     Решение

Задача 116354

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3-
Классы: 8,9,10

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

Прислать комментарий     Решение

Задача 52869

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике радиус вписанной окружности составляет 2/7 высоты, а периметр этого треугольника равен 56. Найдите его стороны.

Прислать комментарий     Решение

Задача 52754

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

Дан треугольник со сторонами 12, 15, 18. Проведена окружность, касающаяся обеих меньших сторон и имеющая центр на большой стороне. Найдите отрезки, на которые центр окружности делит большую сторону треугольника.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 245]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .