ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56472
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 2+
Классы: 9
В корзину
Прислать комментарий

Условие

а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что  AD : DC = AB : BC.

б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении  AO : OA1 = (b + c) : a,  где a, b, c  – длины сторон треугольника.


Решение

  а) Первый способ. Докажем утверждение для биссектрисы внутреннего угла. Проведём через точку C прямую, параллельную BD, до пересечения с прямой AB в точке E. Так как  ∠BEC = ∠ABD = ∠CBD = ∠BCE,  то треугольник CBE – равнобедренный  (BC = BE).  По теореме Фалеса
AD : DC = AB : BE = AB : BC.

  Для биссектрисы внешнего угла доказательство аналогично.

  Второй способ. Точка равноудалена D от прямых AB и BC. Поэтому  AD : DC = SABD : SBCD = AB : BC.

  б) Из а) следует, что   BA1 = ac/b+c.  Так как BO – биссектриса треугольника ABA1, то  AO : OA1 = AB : BA1 = (b + c) : a.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 2
Название Отношение сторон подобных треугольников
Тема Отношения линейных элементов подобных треугольников
задача
Номер 01.017

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .