Страница: 1
2 3 4 >> [Всего задач: 17]
На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что
∠AB2C = ∠AC2B = 90°. Докажите, что AB2 = AC2.
а) В треугольнике ABC проведена биссектриса BD
внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC.
б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника.
Длины двух сторон треугольника равны a, а длина третьей стороны равна b. Вычислите радиус его описанной окружности.
Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что 1/AE2 + 1/AF2 = 1/AB2.
Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
остается постоянной.
Страница: 1
2 3 4 >> [Всего задач: 17]