ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56475
Темы:    [ Средние пропорциональные в прямоугольном треугольнике ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 2
Классы: 9
В корзину
Прислать комментарий

Условие

На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.


Решение

Как известно,  

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 2
Название Отношение сторон подобных треугольников
Тема Отношения линейных элементов подобных треугольников
задача
Номер 01.020

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .