Страница: 1
2 3 4 5 6 7 >> [Всего задач: 52]
|
|
Сложность: 3 Классы: 9,10,11
|
Известно, что x + 2y + 3z = 1. Какое минимальное значение может принимать выражение x² + y² + z²?
|
|
Сложность: 3 Классы: 10,11
|
Найдите наибольшее значение выражения x² + y², если |x – y| ≤ 2 и |3x + y| ≤ 6.
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите равенство:
arctg 1 +
arctg +
arctg =
.
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске после занятия осталась запись:
"Вычислить t(0) − t(π/5) + t(2π/5) − t(3π/5) + ... + t(8π/5) − t(9π/5), где t(x) = cos5x + *cos4x + *cos3x + *cos2x + *cosx + *".
Увидев её, студент мехмата сказал товарищу, что он может вычислить эту сумму, даже не зная значений стёртых с доски коэффициентов (вместо них в нашей записи *). Не ошибается ли он?
|
|
Сложность: 3+ Классы: 8,9,10
|
Положительные числа a, b, c таковы, что a² + b² – ab = c². Докажите, что (a – c)(b – c) ≤ 0.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 52]