ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61304
Темы:    [ Предел последовательности, сходимость ]
[ Непрерывные функции (общие свойства) ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n $ \geqslant$ 0). Докажите, что если эта последовательность имеет предел x* = $ \lim\limits_{n\to\infty}^{}$xn, и функция f (x) непрерывна, то этот предел является корнем исходного уравнения: f (x*) = x*.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 9
Название Уравнения и системы
Тема Неопределено
параграф
Номер 3
Название Итерации
Тема Алгебраические уравнения и системы уравнений (прочее)
задача
Номер 09.053

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .